\( \def\naturals{\mathbb{N}} \def\integers{\mathbb{Z}} \def\rationals{\mathbb{Q}} \def\reals{\mathbb{R}} \)
We have $\cup$ represent union and $\cap$ as intersection.
To distinguish countable and uncountable index, we have $\alpha$ as uncountable index.
$(\cup_\alpha \mathbb{E}_\alpha)^C = \cap_\alpha \mathbb{E}_\alpha ^C$
proof: $\forall x \in \cup_\alpha \mathbb{E}_\alpha$ ( $\mathbb{E}_\alpha$ is open)
$\Rightarrow x \in \mathbb{E}_\alpha$ for some $\alpha$.
$\Rightarrow x$ is an interior point to $\mathbb{E}_\alpha$,
$\Rightarrow x$ is an interior point to $\cup_\alpha \mathbb{E}_\alpha$
proof: $\forall x \in \cap_\alpha \mathbb{E}_\alpha$ ( $\mathbb{E}_\alpha$ is closed)
$\Rightarrow \forall \alpha, x \in \mathbb{E}_\alpha$.
$\Rightarrow x$ is an interior or limit point for all $\mathbb{E}_\alpha$,
$\Rightarrow x$ is an interior or limit point to $\cap_\alpha \mathbb{E}_\alpha$
$\mathbb{E}$ is dense in metric $\mathbb{X}$ if every point of $\mathbb{X}$ is a limit point of $\mathbb{E}$ or belongs to $\mathbb{X}$
For example, $\mathbb{Q}$ is dense in $\mathbb{R}$.