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Sets, Induction, Counting

1 Sets and Relations

Question 1:

Using the basic definition of subsets, show that the empty set is a subset of every set.

key:

1. Subset definition: A ⊆ B : ∀x ∈ A→ x ∈ B.

2. Empty set definition: an empty set has no element.
Let A = ∅. we need to prove that ∀x ∈ ∅ → x ∈ B.

3. Prove by controdiction: suppose that ∃x ∈ ∅ → x ∈ B

4. Vacuously true: you cannot pick any x ∈ ∅.
Thus, no such x exists.

⇒ The empty set is a subset of every set.

Question 2:

Definitions: A relation R on any set A is said to be:

Reflexive: if ∀x ∈ A, (x, x) ∈ R.

Transitive: if ∀x, y, z ∈ A, ((x, y) ∈ R AND (y, z) ∈ R)⇒ (x, z) ∈ R.

Symmetric: if ∀x, y ∈ A, (x, y) ∈ R⇒ (y, x) ∈ R.

Asymmetric: if ∀x, y ∈ A, (x, y) ∈ R⇒ (y, x) /∈ R.

For each of the following relations, state which of the above five properties hold. We will
represent the relation using the symbol R.

(a) For x, y ∈ Z, (x, y) ∈ R⇒ |x| = |y|.

(b) For x, y ∈ Z, (x, y) ∈ R⇒ x < y.

(c) For x, y ∈ Z, (x, y) ∈ R⇒ x + y is even.

key:

(a) Reflexive, Symmetric, Transitive.

(b) Transitive, Asymmetric.

(c) Reflexive, Symmetric, Transitive.

Any reasonable explain is accepted.

Note: Reflexive is true for ≤,=, and |, false for >,<, 6=, 6 |.
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2 Induction

Question 1:

Prove the following proposition

P (n) : 2n + 1 < 2n for all n ≥ 3

key:

1. Base case: n = 3, 7 < 8 is true.

2. Assume it is true for n = k, that is
2k + 1 < 2k

3. Let’s consider the case when n = k + 1,

2(k + 1) + 1 = (2k + 1) + 2 < 2k + 2k = 2k+1

Thus, the proposition holds true for n = k + 1.

⇒ We can prove by induction that P (n) : 2n + 1 < 2n for all n ≥ 3 is true.

Question 2:

We have seen in class how a chess board of size 2n, n ≥ 2 can be completely filled using L-shaped
blocks, leaving one square empty as shown in the following figures. In class we used the specific
construction that the empty square is at a corner of the board. Using induction, prove that this
empty square could, in fact, be placed anywhere in the board.

Left: A board of size 2n (n = 2) filled using L-shaped blocks of size 3, leaving a corner square
empty.

Right: Filling the same board leaving a different square empty.

key:

1. Base case: n = 2, obviously it is true.

2



Mathematical Foundations HW 1 By 4:30pm, 14 Sep, 2015

2. Assume it is true for n = k, that is, the empty square could be placed anywhere in the board
with size of 2k.

3. Let’s consider when n = k + 1,

(2k+1)2 = 4 ∗ (2k)2, which means a square of size 2n + 1 can be decomposed to 4 squares of size 2n.

We know from the assumption that every smaller board of size 2n can be placed an empty square
anywhere. Let any 3 of these 4 empty squares form a L-shaped block at the centre of the big
square, and the last empty square can be placed in its board anywhere.
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Question 3:

Using induction, prove that every day is the same day of the week. Formally, you must prove the
hypothesis P(n) that All days in any set of n days are the same day of the week. In order to do
so, you must make a questionable assumption of the base case. Explain the problem. Wikipedia
will give you the wrong answer, so don’t bother with it.

key:

1. If you assume n = 1 is the base case, you can prove ”all days in any set of n days are the same
day of the week” is true.

2. But by common sense, we know that “all days in any set of n days are the same day of the
week” is false. For example, Monday is different with Tuesday. Where is the problem? Is the
induction a wrong method in some cases?

3. Let’s clasify the difference between ”equailvlent” and ”equal”:

equailvlent is a relationship, which is built based on two different objects.

equal means the object itself.

4. Actually n = 2 is the right base case, which cannot be hold by the proposition.

⇒ Days in one week are not the same.
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3 Counting

Question 1:

Prove that the set {1, 2, 7, 9, 10, 12} is finite.

key:

This set has an isomorphism with J6.

Question 2:

Show that the intersection of a finite set and a countable set is finite.

key:

Let F be the finite set and C be the countable set, and S = C ∩ F

1. F has an isomorphism with Jf , for some f ∈ N.

2. An element in S if and only if it is in both C and F.

3. S contains s of elements, s ≤ f . Thus, S have an isomorphism with Js, for some s ∈ N. That is,
S is finite.

⇒ The intersection of a finite set and a countable set is finite.

Question 3:

Show that the union of two finite sets is finite.

key: Let A and B be the two finite sets, and S = A ∪ B.

1. A has an isomorphism with Ja, for some a ∈ N. B has an isomorphism with Jb, for some b ∈ N.

2. An element in S if it is in any one of C or F.

3. S has at most a + b of elements, say s, s ≤ a + b.

4. Thus, S can have an isomorphism with Js, for some s ∈ N, that is, S is finite.

⇒ The union of two finite sets is finite.

4 Axioms

Question 1:

A field is a set for which we have defined an “addition” operation, usually denoted by “+”, and a
“multiplication” operation, usually denoted by “×”, which satisfy the following axioms. We will
denote the field by the symbol F below.

Axioms of addition: A1: F is closed under addition. If x ∈ F and y ∈ F , then x + y ∈ F .
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A2: Addition is commutative. x + y = y + x.

A3: Addition is associative. x + (y + z) = (x + y) + z.

A4: F contains an element 0, the “additive identity element”, such that for all x ∈ F , x + 0 = x.

A5: For every x ∈ F , there is a corresponding “additive inverse” y ∈ F such that x + y = 0. We
will represent this additive inverse as “−x”.

Axioms of multiplication: M1: F is closed under multiplication. If x ∈ F and y ∈ F , then
x× y ∈ F .

M2: Multiplication is commutative. x× y = y × x.

M3: Multiplication is associative. x× (y × z) = (x× y)× z.

M4: F contains a “multiplicative identity” element 1 6= 0, such that for all x ∈ F , x× 1 = x.

M5: For every x ∈ F , if x 6= 0, there is a corresponding “multiplicative inverse” y ∈ F such that
x× y = 1. We will represent this multiplicative inverse as “ 1

x”.

The distributive law: for all x, y, z ∈ F ,

x× (y + z) = x× y + x× z.

Note that the above are axioms. They cannot be derived. They are simply established by
definition or diktat.

Fun Facts: You may be surprised to realize that commutativity, associativity, distributivity, and
the non-equivalence of additive and multiplicative identities are not demonstrable facts. These are
rules established by axiom. We can eliminate one or more of these rules, and a different type of
mathematics will result, as we will see later.

Using the axioms of multipication, prove the following.

(a) If x 6= 0 and x× y = x× z, then y = z.

(b) If x 6= 0 and x× y = x, then y = 1.

(c) If x 6= 0 and x× y = 1, then y = 1
x .

(d) If x 6= 0, then 1
1
x

= x.

key:

(a)

1. x 6= 0→ 1
x M5

2. y = 1× y M4
= ( 1x × x)× y M5
= 1

x × (x× y) M3
= 1

x × (x× z)
= ( 1x × x)× z M5
= 1 ∗ z M5
= z M4
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(b)

1. x 6= 0→ 1
x M5

2. y = 1× y M4
= ( 1x × x)× y M5
= 1

x × (x× y) M3
= 1

x × x
= 1 M5

(c)

1. x 6= 0→ 1
x M5

2. y = 1× y M4
= ( 1x × x)× y M5
= 1

x × (x× y) M3
= 1

x × 1
= 1

x M4

(d)

1. x 6= 0→ 1
x 6= 0 M5

2. 1
1
x

= 1
1
x

× 1

= 1
1
x

× ( 1
1
x

× x)

= 1× x
= x

Note: we cannot use A = B → 1
x ×A = 1

x ×B directly, as it is not the axiom.
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