
Mathematical Foundations HW 3 By 4:30pm, 5 Oct, 2015

Metric Spaces and Sets

1 DeMorgan’s Laws

Question 1:

Let {Eα} be a collection of sets in any metric space. The subscript α is used to indicate that the
collection may not be countable.

Prove the following (The superscript c represents a complement relative to the metric space):

(i) (⋃
α

Eα

)c
=
⋂
α

Ecα

Hint: You may find it easier to prove that if any element x belongs to the LHS implies that it
belongs to the RHS and vice versa.

(ii) (⋂
α

Eα

)c
=
⋃
α

Ecα

key:

(i) Consider x ∈ (
⋃
αEα)c

⇒ x /∈
⋃
αEα

⇒ x /∈ any Eα,∀α
⇒ x /∈ Eα1&Eα2&Eα3 . . .

⇒ x ∈ Ecα1
&x ∈ Ecα2

&x ∈ Ecα3
. . .

⇒ x ∈ Ecα1
∩ Ecα2

∩ Ecα3
. . .

⇒ x ∈
⋂
αE

c
α

⇒ (
⋃
αEα)c ⊆

⋂
αE

c
α

Consider x ∈
⋂
αE

c
α

⇒ x ∈ Ecα1
&x ∈ Ecα2

&x ∈ Ecα3
. . .

⇒ x /∈ Eα1&x /∈ Eα2&x /∈ Eα3 . . .

⇒ x /∈ Eα1 ∪ Eα2 ∪ Eα3 . . .

⇒ x /∈
⋃
αEα

⇒ x ∈ (
⋃
αEα)c

⇒
⋃
αE

c
α ⊆ (

⋂
αEα)c
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Thus, we can arrive at the conclusion that(⋂
α

Eα

)c
=
⋃
α

Ecα

(ii) This applies the same as (i).

Question 2:

Prove the following:

(i) The arbitrary union of open sets is open.

Hint: Recall that an open set, by definition, is one in which every element is an interior point.

(ii) The arbitrary intersection of closed sets is closes.

Hint: De Morgan’s laws.

(iii) Finite intersection of open sets is open.

(iv) Finite union of closed sets is closed.

key:

(i) Given an arbitrary collection of open sets, say {Gα}, we need to prove that
⋃
αGα is open.

Consider x ∈
⋃
αGα

⇒ x ∈ Gα1 ∪Gα2 ∪Gα3 . . .

⇒ x ∈ Gα1 or x ∈ Gα2 or x ∈ Gα3 . . .

⇒ x is interior point for some Gα.

⇒ ∃ a neighborhood of x,Nr(x) ∈ Gα for some α.

⇒ Nr(x) ∈
⋃
αGα

⇒ x is interior point of
⋃
αGα

⇒
⋃
αGα is an open set.

Thus, we can arrive at the conclusion that the arbitrary union of open sets is open.

(ii) Given an arbitrary collection of closed sets, say {Gα}, we need to prove that
⋂
αGα is closed.

If Gα is closed, then Gα
c is open.

⇒
⋃
αG

c
α is open (the arbitrary union of open sets is open).

⇒ (
⋂
αGα)c is open ((

⋂
αGα)c =

⋃
αG

c
α).

⇒
⋂
αGα is closed.

Thus, we can arrive at the conclusion that the arbitrary intersection of closed sets is closed.

(iii) Given a finite collection of open set, say {Gi}, we need to prove that
⋂n
i=0Gi is open.
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Consider x ∈
⋂n
i=0Gi

⇒ x ∈ G1 and x ∈ G2 and x ∈ G3 . . . x ∈ Gn
⇒ x is interior point for all Gi.

⇒ ∃ neighborhoods of xi, Nr(xi) ∈ Gi with radius of ri, can be covered by Gi individually.

⇒ Nr(xmin) ∈ all Gi with the minimum radius (rmin = min{r1, r2, . . . , rn}).
(The minimim must exits as {ri} is finite.)

⇒ Nr(xmin) ∈
⋂n
i=0Gi

⇒ xmin is an interior point in
⋂n
i=0Gi.

⇒
⋂n
i=0Gi is open.

Thus, we can arrive at the conclusion that finite intersection of open sets is open.

(iv) This applies the same as (ii) by using (iii) and (
⋃n
i=0Gi)

c =
⋂n
i=0G

c
i .

2 Open and Closed Sets

Question 1:

Show that

(i) The (relative) complement of an open set is closed.

(ii) The (relative) complement of closed set is open.

key:

(i) Consider an open set E in metric space (X, d).

Ec = X \ E = {p ∈ X : p /∈ E}.
Since E is open, all of the points in E are interior points.

⇒ for all x ∈ E, ∃ a neighborhood Nr of x,Nr(x) ⊆ E.

⇒ Nr(x) is disjoint from Ec for all x.

⇒ ∀x ∈ E, x is not a limit point of Ec.

⇒ Ec has no limit point outside itself.

⇒ Ec contains all its limit points.

⇒ Ec is closed.

We can arrive at the conclusion that the (relative) complement of an open set is closed.

(ii) Consider a closed set E in metric space (X, d), and Ec is the complement of E in X.

⇒ E has all its limit points.

⇒ Consider x ∈ Ec, x is not a limit point of E as x /∈ E .
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⇒ ∃ a neighborhood Nr of x,Nr(x) ∩ E = ∅.
⇒ Nr(x) ⊆ Ec.

⇒ x is an interior point of Ec.

⇒ Ec is an open set.

We can arrive at the conclusion that the (relative) complement of closed set is open.

Question 2:

Consider any set C. Let C ′ be the set of limit points of C. The closure of C is defined as
C̄ = C ∪ C ′. Show that C̄ is also closed.

key:

Consider p is a limit point of C̄, we need to prove that p ∈ C̄.

Since C̄ = C ∪ C ′, how to prove that p ∈ C or p ∈ C ′?
1. If p ∈ C, we find such point p.

2. If p /∈ C, we need to prove that p ∈ C ′, that is, p is a limit point of C.

Consider a neighbohood Nr(p) of p, we need to find Nr(p) contains a point that is also in C.

Since p is a limit point of C̄, Nr(p) contains a point, say, q ∈ C̄.

1. If q ∈ C, we find such point q.

2. If q /∈ C, then q is a limit point of C (C̄ = C ∪ C ′).
Consider a neighbohood Nr(q) of q, such that Nr(q) ⊂ Nr(p).

∃ a point q′ ∈ Nr(q), so q′ ∈ Nr(p), then we find such point q′.

⇒ Thus, we can arrive at the conclusion that C̄ is closed.

3 Compact Sets

Show the following. In general, for proofs relating to compactness, we draw upon the fact than
any cover has a finite subcover, and we now only have deal with a finite number of elements.
Recall also that finite collections of numbers provably have a supremum and an infimum within
the collection.

(i) Finite sets are compact.

key: Consider the elements in a finite set S are: x1, x2, . . . , xN , and an open cover set {Gα}
covering S.

For ∀xi, choose one Gαi that contains xi.

⇒ {Gα}ki=0 covers x1, x2, . . . , xN , k ≤ N (since one of Gαi may contains more than one element in
S).

⇒ {Gα}ki=0 is a finite subcover.

⇒ and hence finite sets are compact.
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(ii) Compact sets are bounded.

key:

Consider K is a compact set → Any open cover of K has a finite subcover.

Consider the open cover {B(xi) : xi ∈ K}Ni=0, each B(xi) has a radius of 1.

{B(xi)} has a finite cover → ∃ a subcover {B(xi)}ki=0, k ≤ N .

Since x1, x2, . . . , xN , k ≤ N is finite, R = max0<i,j<N{d(xi, xj)} must exists.

Thus, ∃ a point p /∈ K, B(p) with the radius of (R + 2) covers all K.

There, K is bounded set.

⇒ Thus, compact sets are bounded.

(iii) Compact sets are closed.

key:

Consider a compact set K, we need to prove Kc is open.

For p ∈ Kc, and rx = 1
2d(x, p) for each x ∈ K.

Consider a collection of neighborhoods {Nrx(x) : x ∈ K}, it is an open cover of K, and so has a
finite subcover.

∃ a neighborhood of x, Nr(p), such that Nrx(x)∩Nr(p) = ∅ (Please draw the pictures, then it will
be obvious).

⇒ Nr(p) ∩ (Nrx1
∪Nrx2

∪ . . . Nrxn ) = ∅
⇒ Nr(p) /∈ K
⇒ Nr(p) ∈ Kc

⇒ p is an interior point of Kc.

⇒ Kc is an open set.

⇒ K is closed.

Thus, compact sets are closed.

(iv) For any set C (in a metric space)

C compact⇐⇒ C closed and bounded

Note that you have to prove this both ways, as this is a bidirectional relation.

key:

I. C compact⇒ C closed and bounded has been proved by (ii) and (iii).

II. Prove that C closed and bounded⇒ C compact.

Actually this is not true for arbitrart metric space, for example, X = { 1n : n ∈ N∗} in discrete.

Here I will prove it in Rn.

First, let’s introduce a concept: k-cell.

k-cell is a set in the form of [a1, b1]× · · · × [ak, bk] in Rk, where ai < bi for i = 1, . . . , k.
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We can think of k-cell as a k-dimensional rectangular region.

Second, le’s prove that every k-cell is compact.

Suppose k-cell is not compact.

Consider {G} is an open cover of k-cell, thus {G} has no finite subcover.

We will split the k-cell in Rn in half in every dimension.

In 1-dimension, split [−r, r] into [−r, 0] and [0, r].

In 2-dimensions, split the rectangle into four equivalent rectangles. And so on . . . .

Thus a k-cell is divided into 2k subcells, and each of them is also a k-cell.

Since subcell ⊆ cell, some subcollection of {G} must be an open cover of each subcell. Thus at
least one of the subcells have an infinite cover. For these subcells with an infinite cover, subdivide
them by cutting it in half in each dimension again. Then we can construct an infinite sequence of
subcells and some sets in this infinite sequence are from {G}.
Since every set in the subcollection is an open set, thus these contains the point from {G} also
contains the subcell, so the subcell has a finite open cover, which is contraditory.

We can arrive at that the k-cell is compact.

Finally we can prove closed and bounded set is compact by using k-cell.

If C is bounded, we have C ⊂ a collection I of some k-cells. I is compact since every k-cell is
compact. Since C is closed subset of a compact set, C is compact.

(v) If C is closed and K is compact, C ∩K is compact.

key:

We know that C ∩K ⊂ K and K is compact, thus K is closed and bounded, and C ∩K is also
bounded (the same ball which bounds K can also bounds C ∩K).

Since K and C are closed, thus C ∩K is closed.

Thus, C ∩K is bounded and closed ⇒ compact.
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