Real Analysis Key Concepts

Xiangzhu Long

11691

Carnegie Mellon University

According to Principles of Mathematical Analysis by Walter Rudin (Chapter 1-5)

December 8, 2015

1 The Real and Complex Number

- 2 Basic Topology
- 3 Numerical Sequences and Series

4 Continuity

5 Differentiation

Sets

Set Operations

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Addition Axioms

Mutiplication Axioms

Xiangzhu Long (CMU)

Real Analysis Key Concepts

December 8, 2015 4 / 44

• • • • • • • •

Boundaries

Upper Bound

Least Upper Bound

Lower Bound

Greatest Lower Bound

< ⊢□

- 1. non-trival
- 2. closed downwards
- 3. no largest number

eg:
$$lpha = \mathbb{Q}^-$$
 Yes $A = \{x | x^2 < 2, x \in \mathbb{Q}\}$ No

Real Numbers (\mathbb{R})

Relational Numbers (\mathbb{Q})

Natural Numbers (\mathbb{N})

Image: Image:

Xiangzhu Long (CMU)

• • • • • • • •

Complex Numbers

 ${\mathbb C}$ Operations

Conjugate

Inner Product

3

Image: A matrix

Induction

1. Base case

2. Inductive steps

æ

Image: A matrix

Sets Relationship

Injection

Surjection

Bijection

A (1) > 4

Finite Set

 J_n

Finite sets:

Infinite sets: \mathbb{N}

• • • • • • • •

Countable sets: \mathbb{N} , \mathbb{Z} , \mathbb{Q}

Uncountable sets: $\ensuremath{\mathbb{R}}$

< 🗗 🕨

Countability Theorems

Xiangzhu Long (CMU)

Powerset

Cantor Theorem: $A \approx 2^A$

æ

3

- 1. non-negativity
- 2. symmetry
- 3. triangle inequality
- eg: Euclidean spaces

Limit Point

Open ball

Closed ball

Limit point

• • • • • • • •

Points and Sets

Isolated points

Interior points

Open set

Closed set

< 🗇 🕨

Closure

Closure of a set

Closure property:

Relationship bt. Open and Closed Sets

< 一型

Compact Sets

Open Cover

Subcove

Compact Set

Xiangzhu Long (CMU)

• • • • • • • •

-

Xiangzhu Long (CMU)

In \mathbb{R}^n , K is compact \Leftrightarrow K is closed and bounded.

Finite Interesction Property

< 🗇 🕨

Cantor Set

Xiangzhu Long (CMU)

3

・ロト ・聞ト ・ヨト ・ヨト

Connectness

Separated sets

Connected sets

eg: [a,b] is connected

< 🗗 🕨

Converge

Converge

Diverge

3

イロト イヨト イヨト イヨト

Converge Theorems

Xiangzhu Long (CMU)

• • • • • • • •

Subsequence

Subsequence

Subsequence theorems

< 🗇 🕨

Cauchy Sequence

Xiangzhu Long (CMU)

• • • • • • • •

Monotonic Sequence

Xiangzhu Long (CMU)

< 67 ▶

Series

Series

Series Converge

∃ → (∃ →

• • • • • • • •

Series Theorems

Xiangzhu Long (CMU)

イロト イ団ト イヨト イヨト

Function Limits

$$\lim_{x \to p} f(x) = q \ (\epsilon - \delta \text{ ball})$$

3

・ロト ・ 日 ト ・ 田 ト ・

Limit Properties

1. unique

- 2. $\lim_{x \to p} f(n+m) = \lim_{x \to p} f(n) + \lim_{x \to p} f(m)$
- 3. algebraic limit theorem:

f continous at $p \Leftrightarrow \lim_{x \to p} f(x) = f(q)$

- ∢ ศ⊒ ▶

Continuous Function on Compact Set I

 $f: X \to Y$ is continuous

 $\Leftrightarrow \forall$ open set $U \in Y$, $f^{-1}(U)$ is open in X,

 $\Leftrightarrow \forall$ closed set $K \in Y$, $f^{-1}(K)$ is closed in X,

Continuous Function on Compact Set II

 $f: X \to Y$ is continuous, X compact $\Rightarrow f(x)$ is compact.

Extrem Value Theorem

Uniform Continuity

Xiangzhu Long (CMU)

• • • • • • • •

If $f : [a, b] \to \mathbb{R}$ continuous, and f(a) < c < f(b), then $\exists x \in (a, b)$ such that f(x) = c.

Dirichlet funtion

Simple Discontinuity

Second Discontinuity

< 67 ▶

Monotonic

Xiangzhu Long (CMU)

2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• • • • • • • •